Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(1): e2300833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37806773

RESUMO

Solid-state sodium ion conductors are crucial for the next generation of all-solid-state sodium batteries with high capacity, low cost, and improved safety. Sodium closo-carbadodecaborate (NaCB11 H12 ) is an attractive Na-ion conductor owing to its high thermal, electrochemical, and interfacial stability. Mechanical milling has recently been shown to increase conductivity by five orders of magnitude at room temperature, making it appealing for application in all-solid-state sodium batteries. Intriguingly, milling longer than 2 h led to a significant decrease in conductivity. In this study, X-ray Raman scattering (XRS) spectroscopy is used to probe the origin of the anomalous impact of mechanical treatment on the ionic conductivity of NaCB11 H12 . The B, C, and Na K-edge XRS spectra are successfully measured for the first time, and ab initio calculations are employed to interpret the results. The experimental and computational results reveal that the decrease in ionic conductivity upon prolonged milling is due to the increased proximity of Na to the CB11 H12 cage, caused by severe distortion of the long-range structure. Overall, this work demonstrates how the XRS technique, allowing investigation of low Z elements such as C and B in the bulk, can be used to acquire valuable information on the electronic structure of solid electrolytes and battery materials in general.

2.
ACS Appl Energy Mater ; 5(7): 8057-8066, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35935016

RESUMO

Complex metal hydride/oxide nanocomposites are a promising class of solid-state electrolytes. They exhibit high ionic conductivities due to an interaction of the metal hydride with the surface of the oxide. The exact nature of this interaction and composition of the hydride/oxide interface is not yet known. Using 1H, 7Li, 11B, and 29Si NMR spectroscopy and lithium borohydride confined in nanoporous silica as a model system, we now elucidate the chemistry and dynamics occurring at the interface between the scaffold and the complex metal hydride. We observed that the structure of the oxide scaffold has a significant effect on the ionic conductivity. A previously unknown silicon site was observed in the nanocomposites and correlated to the LiBH4 at the interface with silica. We provide a model for the origin of this silicon site which reveals that siloxane bonds are broken and highly dynamic silicon-hydride-borohydride and silicon-oxide-lithium bonds are formed at the interface between LiBH4 and silica. Additionally, we discovered a strong correlation between the thickness of the silica pore walls and the fraction of the LiBH4 that displays fast dynamics. Our findings provide insights on the role of the local scaffold structure and the chemistry of the interaction at the interface between complex metal hydrides and oxide hosts. These findings are relevant for other complex hydride/metal oxide systems where interface effects leads to a high ionic conductivity.

3.
Molecules ; 27(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35408587

RESUMO

Complex hydrides, such as LiBH4, are a promising class of ion conductors for all-solid-state batteries, but their application is constrained by low ion mobility at room temperature. Mixing with halides or complex hydride anions, i.e., other complex hydrides, is an effective approach to improving the ionic conductivity. In the present study, we report on the reaction of LiBH4 with LiBF4, resulting in the formation of conductive composites consisting of LiBH4, LiF and lithium closo-borates. It is believed that the in-situ formation of closo-borate related species gives rise to highly conductive interfaces in the decomposed LiBH4 matrix. As a result, the ionic conductivity is improved by orders of magnitude with respect to the Li-ion conductivity of the LiBH4, up to 0.9 × 10-5 S cm-1 at 30 °C. The insights gained in this work show that the incorporation of a second compound is a versatile method to improve the ionic conductivity of complex metal hydrides, opening novel synthesis pathways not limited to conventional substituents.

4.
ACS Appl Mater Interfaces ; 13(51): 61346-61356, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34927409

RESUMO

The body-centered cubic (bcc) polymorph of NaCB11H12 has been stabilized at room temperature by high-energy mechanical milling. Temperature-dependent electrochemical impedance spectroscopy shows an optimum at 45-min milling time, leading to an rt conductivity of 4 mS cm-1. Mechanical milling suppresses an order-disorder phase transition in the investigated temperature range. Nevertheless, two main regimes can be identified, with two clearly distinct activation energies. Powder X-ray diffraction and 23Na solid-state NMR reveal two different Na+ environments, which are partially occupied, in the bcc polymorph. The increased number of available sodium sites w.r.t. ccp polymorph raises the configurational entropy of the bcc phase, contributing to a higher ionic conductivity. Mechanical treatment does not alter the oxidative stability of NaCB11H12. Electrochemical test on a symmetric cell (Na|NaCB11H12|Na) without control of the stack pressure provides a critical current density of 0.12 mA cm-2, able to fully charge/discharge a 120 mA h g-1 specific capacity positive electrode at the rate of C/2.

5.
ChemCatChem ; 13(8): 1998-2004, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-34221181

RESUMO

Electrochemical conversion of CO2 is an attractive alternative to releasing it to the atmosphere. Catalysts derived from electroreduction of metal oxides are often more active than when starting with metallic phase catalyst. The origin of this effect is not yet clear. Using ZnO nanorods, we show that the initial structure of the oxide as well as the electrolyte medium have a profound impact on the structure of the catalytic active Zn phase, and thereby the selectivity of the catalysts. ZnO nanorods with various aspect ratios were electrochemically reduced in different electrolytes leading to metallic Zn with different structures; a sponge-like structure, nanorods and nanoplates. The sponge-like Zn produced syngas with H2 : CO=2, and some formate, the nanorods produced only syngas with H2 : CO=1, while Zn nanoplates exhibited 85 % selectivity towards CO. These results open a pathway to design new electrocatalysts with optimized properties by modifying the structure of the starting material and the electroreduction medium.

6.
J Phys Chem C Nanomater Interfaces ; 125(27): 15052-15060, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34295449

RESUMO

Synthesizing Li-ion-conducting solid electrolytes with application-relevant properties for new energy storage devices is a challenging task that relies on a few design principles to tune ionic conductivity. When starting with originally poor ionic compounds, in many cases, a combination of several strategies, such as doping or substitution, is needed to achieve sufficiently high ionic conductivities. For nanostructured materials, the introduction of conductor-insulator interfacial regions represents another important design strategy. Unfortunately, for most of the two-phase nanostructured ceramics studied so far, the lower limiting conductivity values needed for applications could not be reached. Here, we show that in nanoconfined LiBH4/Al2O3 prepared by melt infiltration, a percolating network of fast conductor-insulator Li+ diffusion pathways could be realized. These heterocontacts provide regions with extremely rapid 7Li NMR spin fluctuations giving direct evidence for very fast Li+ jump processes in both nanoconfined LiBH4/Al2O3 and LiBH4-LiI/Al2O3. Compared to the nanocrystalline, Al2O3-free reference system LiBH4-LiI, nanoconfinement leads to a strongly enhanced recovery of the 7Li NMR longitudinal magnetization. The fact that almost no difference is seen between LiBH4-LiI/Al2O3 and LiBH4/Al2O3 unequivocally reveals that the overall 7Li NMR spin-lattice relaxation rates are solely controlled by the spin fluctuations near or in the conductor-insulator interfacial regions. Thus, the conductor-insulator nanoeffect, which in the ideal case relies on a percolation network of space charge regions, is independent of the choice of the bulk crystal structure of LiBH4, either being orthorhombic (LiBH4/Al2O3) or hexagonal (LiBH4-LiI/Al2O3). 7Li (and 1H) NMR shows that rapid local interfacial Li-ion dynamics is corroborated by rather small activation energies on the order of only 0.1 eV. In addition, the LiI-stabilized layer-structured form of LiBH4 guarantees fast two-dimensional (2D) bulk ion dynamics and contributes to facilitating fast long-range ion transport.

7.
ACS Appl Energy Mater ; 4(2): 1228-1236, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33644698

RESUMO

LiBH4 has been widely studied as a solid-state electrolyte in Li-ion batteries working at 120 °C due to the low ionic conductivity at room temperature. In this work, by mixing with MgO, the Li-ion conductivity of LiBH4 has been improved. The optimum composition of the mixture is 53 v/v % of MgO, showing a Li-ion conductivity of 2.86 × 10-4 S cm-1 at 20 °C. The formation of the composite does not affect the electrochemical stability window, which is similar to that of pure LiBH4 (about 2.2 V vs Li+/Li). The mixture has been incorporated as the electrolyte in a TiS2/Li all-solid-state Li-ion battery. A test at room temperature showed that only five cycles already resulted in cell failure. On the other hand, it was possible to form a stable solid electrolyte interphase by applying several charge/discharge cycles at 60 °C. Afterward, the battery worked at room temperature for up to 30 cycles with a capacity retention of about 80%.

8.
ACS Appl Mater Interfaces ; 12(34): 38570-38583, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786241

RESUMO

Solid electrolytes based on LiBH4 receive much attention because of their high ionic conductivity, electrochemical robustness, and low interfacial resistance against Li metal. The highly conductive hexagonal modification of LiBH4 can be stabilized via the incorporation of LiI. If the resulting LiBH4-LiI is confined to the nanopores of an oxide, such as Al2O3, interface-engineered LiBH4-LiI/Al2O3 is obtained that revealed promising properties as a solid electrolyte. The underlying principles of Li+ conduction in such a nanocomposite are, however, far from being understood completely. Here, we used broadband conductivity spectroscopy and 1H, 6Li, 7Li, 11B, and 27Al nuclear magnetic resonance (NMR) to study structural and dynamic features of nanoconfined LiBH4-LiI/Al2O3. In particular, diffusion-induced 1H, 7Li, and 11B NMR spin-lattice relaxation measurements and 7Li-pulsed field gradient (PFG) NMR experiments were used to extract activation energies and diffusion coefficients. 27Al magic angle spinning NMR revealed surface interactions of LiBH4-LiI with pentacoordinated Al sites, and two-component 1H NMR line shapes clearly revealed heterogeneous dynamic processes. These results show that interfacial regions have a determining influence on overall ionic transport (0.1 mS cm-1 at 293 K). Importantly, electrical relaxation in the LiBH4-LiI regions turned out to be fully homogenous. This view is supported by 7Li NMR results, which can be interpreted with an overall (averaged) spin ensemble subjected to uniform dipolar magnetic and quadrupolar electric interactions. Finally, broadband conductivity spectroscopy gives strong evidence for 2D ionic transport in the LiBH4-LiI bulk regions which we observed over a dynamic range of 8 orders of magnitude. Macroscopic diffusion coefficients from PFG NMR agree with those estimated from measurements of ionic conductivity and nuclear spin relaxation. The resulting 3D ionic transport in nanoconfined LiBH4-LiI/Al2O3 is characterized by an activation energy of 0.43 eV.

9.
J Phys Chem C Nanomater Interfaces ; 124(5): 2806-2816, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32064019

RESUMO

Solid-state electrolytes are crucial for the realization of safe and high capacity all-solid-state batteries. Lithium-containing complex hydrides represent a promising class of solid-state electrolytes, but they exhibit low ionic conductivities at room temperature. Ion substitution and nanoconfinement are the main strategies to overcome this challenge. Here, we report on the synthesis of nanoconfined anion-substituted complex hydrides in which the two strategies are effectively combined to achieve a profound increase in the ionic conductivities at ambient temperature. We show that the nanoconfinement of anion substituted LiBH4 (LiBH4-LiI and LiBH4-LiNH2) leads to an enhancement of the room temperature conductivity by a factor of 4 to 10 compared to nanoconfined LiBH4 and nonconfined LiBH4-LiI and LiBH4-LiNH2, concomitant with a lowered activation energy of 0.44 eV for Li-ion transport. Our work demonstrates that a combination of partial ion substitution and nanoconfinement is an effective strategy to boost the ionic conductivity of complex hydrides. The strategy could be applicable to other classes of solid-state electrolytes.

10.
Phys Chem Chem Phys ; 21(40): 22456-22466, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31580343

RESUMO

Lithium borohydride is a promising lithium ion conductor for all-solid-state batteries. However, the compound only exhibits high ionic conductivity at elevated temperatures, typically above 110 °C. It was shown that the addition of oxides such as silica or alumina increases the room temperature ionic conductivity by 3 orders of magnitude. The origin of this remarkable effect is not yet well understood. Here, we investigate the influence of oxide surface groups on the ionic conductivity of LiBH4/SiO2 nanocomposites. We systematically varied the density and nature of the surface groups of mesoporous silica by heat treatment at different temperatures, or surface functionalization, and subsequently prepared LiBH4/SiO2 nanocomposites by melt infiltration. The ionic conductivity is strongly influenced by the heat treatment temperature, hence the density of the free surface silanol groups. Replacing some of the silanol groups with hydrophobic surface groups resulted in an order of magnitude reduction of the room temperature ionic conductivity, suggesting that their presence is crucial to obtain high ionic conductivity in the nanocomposites. This systematic study and insight provide a basis for further exploration of the impact of surface groups, and for the rational design of novel solid-state nanocomposite electrolytes via interface engineering.

11.
J Phys Chem C Nanomater Interfaces ; 123(35): 21487-21496, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31523341

RESUMO

The development of efficient catalysts for hydrogen generation via ammonia decomposition is crucial for the use of ammonia as an energy carrier. Here, we report the effect of pore confinement of NaNH2 and KNH2 on ammonia decomposition catalysis. For the first time, Ni- or Ru-doped NaNH2 and KNH2 were confined in carbon nanopores using a combination method of solution impregnation and melt infiltration. Structure characterization indicates the nanoscale intimacy between transition metals and alkali metal amides inside the pores of the carbon support. As a result, 8 wt % Ni-doped NaNH2 and KNH2 nanocomposites give NH3 conversions of 79 and 60%, respectively at 425 °C, close to the performance of a 5 wt % Ru/C reference catalyst. 0.8 wt % Ru-doped nanocomposites exhibit even better catalytic performance, with about 95% NH3 conversion at a moderate temperature of 375 °C. The hydrogen production rates of these Ni- and Ru-doped nanocomposites in a pure NH3 flow are about 3-4 times higher than for the recently reported novel catalysts such as Ni-Li2NH and Ru-Li2NH/MgO. Interestingly, the apparent activation energies of the Ru- or Ni-based catalysts decrease 20-30 kJ mol-1 by co-confinement with alkali metal amides. The strategy of nanoconfinement of alkali metal amides in porous hosts may open a new avenue for effectively generating H2 from NH3 at low temperatures.

12.
Nat Commun ; 8(1): 1846, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29184061

RESUMO

Hydrogen is a key element in the energy transition. Hydrogen-metal systems have been studied for various energy-related applications, e.g., for their use in reversible hydrogen storage, catalysis, hydrogen sensing, and rechargeable batteries. These applications depend strongly on the thermodynamics of the metal-hydrogen system. Therefore, tailoring the thermodynamics of metal-hydrogen interactions is crucial for tuning the properties of metal hydrides. Here we present a case of large metal hydride destabilization by elastic strain. The addition of small amounts of zirconium to yttrium leads to a compression of the yttrium lattice, which is maintained during (de)hydrogenation cycles. As a result, the equilibrium hydrogen pressure of YH2 ↔ YH3 can be rationally and precisely tuned up to five orders of magnitude at room temperature. This allows us to realize a hydrogen sensor which indicates the ambient hydrogen pressure over four orders of magnitude by an eye-visible color change.

13.
J Phys Chem C Nanomater Interfaces ; 121(8): 4197-4205, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28286596

RESUMO

LiBH4 is a promising material for hydrogen storage and as a solid-state electrolyte for Li ion batteries. Confining LiBH4 in porous scaffolds improves its hydrogen desorption kinetics, reversibility, and Li+ conductivity, but little is known about the influence of the chemical nature of the scaffold. Here, quasielastic neutron scattering and calorimetric measurements were used to study support effects for LiBH4 confined in nanoporous silica and carbon scaffolds. Pore radii were varied from 8 Å to 20 nm, with increasing confinement effects observed with decreasing pore size. For similar pore sizes, the confinement effects were more pronounced for silica than for carbon scaffolds. The shift in the solid-solid phase transition temperature is much larger in silica than in carbon scaffolds with similar pore sizes. A LiBH4 layer near the pore walls shows profoundly different phase behavior than crystalline LiBH4. This layer thickness was 1.94 ± 0.13 nm for the silica and 1.41 ± 0.16 nm for the carbon scaffolds. Quasi-elastic neutron scattering confirmed that the fraction of LiBH4 with high hydrogen mobility is larger for the silica than for the carbon nanoscaffold. These results clearly show that in addition to the pore size the chemical nature of the scaffold also plays a significant role in determining the hydrogen mobility and interfacial layer thickness in nanoconfined metal hydrides.

14.
Phys Chem Chem Phys ; 16(41): 22651-8, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25231357

RESUMO

Nanoconfined alkali metal borohydrides are promising materials for reversible hydrogen storage applications, but the characterization of hydrogen sorption in these materials is difficult. Here we show that with in situ X-ray Raman spectroscopy (XRS) we can track the relative amounts of intermediates and final products formed during de- and re-hydrogenation of nanoconfined lithium borohydride (LiBH4) and therefore we can possibly identify the de- and re-hydrogenation pathways. In the XRS of nanoconfined LiBH4 at different points in the de- and re-hydrogenation, we identified phases that lead to the conclusion that de- and re-hydrogenation pathways in nanoconfined LiBH4 are different from bulk LiBH4: intercalated lithium (LiCx), boron and lithium hydride were formed during de-hydrogenation, but as well Li2B12H12 was observed indicating that there is possibly some bulk LiBH4 present in the nanoconfined sample LiBH4-C as prepared. Surprisingly, XRS revealed that the de-hydrogenated products of the LiBH4-C nanocomposites can be partially rehydrogenated to about 90% of Li2B12H12 and 2-5% of LiBH4 at a mild condition of 1 bar H2 and 350 °C. This suggests that re-hydrogenation occurs via the formation of Li2B12H12. Our results show that XRS is an elegant technique that can be used for in and ex situ study of the hydrogen sorption properties of nanoconfined and bulk light-weight metal hydrides in energy storage applications.

15.
Angew Chem Int Ed Engl ; 53(45): 12081-5, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25244324

RESUMO

The catalytic properties of Pd alloy thin films are enhanced by a thin sputtered PTFE coating, resulting in profound improvements in hydrogen adsorption and desorption in Pd-based and Pd-catalyzed hydrogen sensors and hydrogen storage materials. The remarkably enhanced catalytic performance is attributed to chemical modifications of the catalyst surface by the sputtered PTFE leading to a possible change in the binding strength of the intermediate species involved in the hydrogen sorption process.

16.
Phys Chem Chem Phys ; 14(16): 5581-7, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22428166

RESUMO

X-Ray Raman Spectroscopy (XRS) is used to study the electronic properties of bulk lithium borohydride (LiBH(4)) and LiBH(4) in porous carbon nano-composites (LiBH(4)/C) during dehydrogenation. The lithium (Li), boron (B) and carbon (C) K-edges are studied and compared with calculations of the starting material and intermediate compounds. Comparison of the B and C K-edge XRS spectra of the as-prepared samples with rehydrogenated samples shows that the B and C electronic structure is largely regained after rehydrogenation. Both Li and C K-edge spectra show that during dehydrogenation, part of the Li intercalates into the porous carbon. This study shows that XRS in combination with calculations is a promising tool to study the electronic properties of nano-crystalline light-weight materials for energy storage.


Assuntos
Boroidretos/química , Compostos de Lítio/química , Nanotubos de Carbono/química , Porosidade , Análise Espectral Raman , Propriedades de Superfície
17.
Faraday Discuss ; 151: 47-58; discussion 95-115, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22455062

RESUMO

Nanoconfinement and the use of catalysts are promising strategies to enhance the reversibility of hydrogen storage in light metal hydrides. We combined nanoconfinement of LiBH4 in nanoporous carbon with the addition of Ni. Samples were prepared by deposition of 5-6 nm Ni nanoparticles inside the porous carbon, followed by melt infiltration with LiBH4. The Ni addition has only a slight influence on the LiBH4 hydrogen desorption, but significantly enhances the subsequent uptake of hydrogen under mild conditions. Reversible, but limited, intercalation of Li is observed during hydrogen cycling. X-ray diffraction shows that the initial crystalline 5-6 nm Ni nanoparticles are not present anymore after melt infiltration with LiBH4. However, transmission electron microscopy showed Ni-containing nanoparticles in the samples. Extended X-ray absorption fine structure spectroscopy proved the presence of Ni(x)B phases with the Ni-B coordination numbers changing reversibly with dehydrogenation and rehydrogenation of the sample. Ni(x)B can act as a hydrogenation catalyst, but solid-state 11B NMR proved that the addition of Ni also enhanced the reversibility of the system by influencing the microstructure of the nanoconfined LiBH4 upon cycling.

18.
Chem Commun (Camb) ; 46(43): 8201-3, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-20871935

RESUMO

The reversible hydrogen capacity of LiBH(4) was improved by a combination of Ni addition, nanosizing and confinement of the active phase in a nanoporous carbon scaffold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...